204 research outputs found

    Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: Effect of passive mixing

    Get PDF
    By using interdigital microfluidic reactors, monodisperse poly(d, l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d, l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification–evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates

    Plasmodium falciparum Apicomplexan-Specific Glucosamine-6-Phosphate N-Acetyltransferase Is Key for Amino Sugar Metabolism and Asexual Blood Stage Development

    Get PDF
    UDP-N-acetylglucosamine (UDP-GlcNAc), the main product of the hexosamine biosynthetic pathway, is an important metabolite in protozoan parasites since its sugar moiety is incorporated into glycosylphosphatidylinositol (GPI) glycolipids and N- and O-linked glycans. Apicomplexan parasites have a hexosamine pathway comparable to other eukaryotic organisms, with the exception of the glucosamine-phosphate N-acetyltransferase (GNA1) enzymatic step that has an independent evolutionary origin and significant differences from nonapicomplexan GNA1s. By using conditional genetic engineering, we demonstrate the requirement of GNA1 for the generation of a pool of UDP-GlcNAc and for the development of intraerythrocytic asexual Plasmodium falciparum parasites. Furthermore, we present the 1.95 A resolution structure of the GNA1 ortholog from Cryptosporidium parvum, an apicomplexan parasite which is a leading cause of diarrhea in developing countries, as a surrogate for P. falciparum GNA1. The indepth analysis of the crystal shows the presence of specific residues relevant for GNA1 enzymatic activity that are further investigated by the creation of site-specific mutants. The experiments reveal distinct features in apicomplexan GNA1 enzymes that could be exploitable for the generation of selective inhibitors against these parasites, by targeting the hexosamine pathway. This work underscores the potential of apicomplexan GNA1 as a drug target against malaria. IMPORTANCE Apicomplexan parasites cause a major burden on global health and economy. The absence of treatments, the emergence of resistances against available therapies, and the parasite''s ability to manipulate host cells and evade immune systems highlight the urgent need to characterize new drug targets to treat infections caused by these parasites. We demonstrate that glucosamine-6-phosphate N-acetyltransferase (GNA1), required for the biosynthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), is essential for P. falciparum asexual blood stage development and that the disruption of the gene encoding this enzyme quickly causes the death of the parasite within a life cycle. The high-resolution crystal structure of the GNA1 ortholog from the apicomplexan parasite C. parvum, used here as a surrogate, highlights significant differences from human GNA1. These divergences can be exploited for the design of specific inhibitors against the malaria parasite

    Interobserver reliability in musculoskeletal ultrasonography: Results from a "Teach the Teachers" rheumatologist course

    Get PDF
    Objective: To assess the interobserver reliability of the main periarticular and intra-articular ultrasonographic pathologies and to establish the principal disagreements on scanning technique and diagnostic criteria between a group of experts in musculoskeletal ultrasonography. Methods: The shoulder, wrist/hand, ankle/foot, or knee of 24 patients with rheumatic diseases were evaluated by 23 musculoskeletal ultrasound experts from different European countries randomly assigned to six groups. The participants did not reach consensus on scanning method or diagnostic criteria before the investigation. They were unaware of the patients' clinical and imaging data. The experts from each group undertook a blinded ultrasound examination of the four anatomical regions. The ultrasound investigation included the presence/absence of joint effusion/synovitis, bony cortex abnormalities, tenosynovitis, tendon lesions, bursitis, and power Doppler signal. Afterwards they compared the ultrasound findings and re-examined the patients together while discussing their results. Results: Overall agreements were 91% for joint effusion/synovitis and tendon lesions, 87% for cortical abnormalities, 84% for tenosynovitis, 83.5% for bursitis, and 83% for power Doppler signal; Îş values were good for the wrist/hand and knee (0.61 and 0.60) and fair for the shoulder and ankle/foot (0.50 and 0.54). The principal differences in scanning method and diagnostic criteria between experts were related to dynamic examination, definition of tendon lesions, and pathological v physiological fluid within joints, tendon sheaths, and bursae. Conclusions: Musculoskeletal ultrasound has a moderate to good interobserver reliability. Further consensus on standardisation of scanning technique and diagnostic criteria is necessary to improve musculoskeletal ultrasonography reproducibility

    Interobserver reliability in musculoskeletal ultrasonography: Results from a "Teach the Teachers" rheumatologist course

    Get PDF
    Objective: To assess the interobserver reliability of the main periarticular and intra-articular ultrasonographic pathologies and to establish the principal disagreements on scanning technique and diagnostic criteria between a group of experts in musculoskeletal ultrasonography. Methods: The shoulder, wrist/hand, ankle/foot, or knee of 24 patients with rheumatic diseases were evaluated by 23 musculoskeletal ultrasound experts from different European countries randomly assigned to six groups. The participants did not reach consensus on scanning method or diagnostic criteria before the investigation. They were unaware of the patients' clinical and imaging data. The experts from each group undertook a blinded ultrasound examination of the four anatomical regions. The ultrasound investigation included the presence/absence of joint effusion/synovitis, bony cortex abnormalities, tenosynovitis, tendon lesions, bursitis, and power Doppler signal. Afterwards they compared the ultrasound findings and re-examined the patients together while discussing their results. Results: Overall agreements were 91% for joint effusion/synovitis and tendon lesions, 87% for cortical abnormalities, 84% for tenosynovitis, 83.5% for bursitis, and 83% for power Doppler signal; Îş values were good for the wrist/hand and knee (0.61 and 0.60) and fair for the shoulder and ankle/foot (0.50 and 0.54). The principal differences in scanning method and diagnostic criteria between experts were related to dynamic examination, definition of tendon lesions, and pathological v physiological fluid within joints, tendon sheaths, and bursae. Conclusions: Musculoskeletal ultrasound has a moderate to good interobserver reliability. Further consensus on standardisation of scanning technique and diagnostic criteria is necessary to improve musculoskeletal ultrasonography reproducibility

    Interobserver reliability in musculoskeletal ultrasonography: Results from a "Teach the Teachers" rheumatologist course

    Get PDF
    Objective: To assess the interobserver reliability of the main periarticular and intra-articular ultrasonographic pathologies and to establish the principal disagreements on scanning technique and diagnostic criteria between a group of experts in musculoskeletal ultrasonography. Methods: The shoulder, wrist/hand, ankle/foot, or knee of 24 patients with rheumatic diseases were evaluated by 23 musculoskeletal ultrasound experts from different European countries randomly assigned to six groups. The participants did not reach consensus on scanning method or diagnostic criteria before the investigation. They were unaware of the patients' clinical and imaging data. The experts from each group undertook a blinded ultrasound examination of the four anatomical regions. The ultrasound investigation included the presence/absence of joint effusion/synovitis, bony cortex abnormalities, tenosynovitis, tendon lesions, bursitis, and power Doppler signal. Afterwards they compared the ultrasound findings and re-examined the patients together while discussing their results. Results: Overall agreements were 91% for joint effusion/synovitis and tendon lesions, 87% for cortical abnormalities, 84% for tenosynovitis, 83.5% for bursitis, and 83% for power Doppler signal; \u3ba values were good for the wrist/hand and knee (0.61 and 0.60) and fair for the shoulder and ankle/foot (0.50 and 0.54). The principal differences in scanning method and diagnostic criteria between experts were related to dynamic examination, definition of tendon lesions, and pathological v physiological fluid within joints, tendon sheaths, and bursae. Conclusions: Musculoskeletal ultrasound has a moderate to good interobserver reliability. Further consensus on standardisation of scanning technique and diagnostic criteria is necessary to improve musculoskeletal ultrasonography reproducibility

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    The EFSUMB Guidelines and Recommendations for Musculoskeletal Ultrasound - Part I: Extraarticular Pathologies

    Get PDF
    The first part of the guidelines and recommendations for musculoskeletal ultrasound, produced under the auspices of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB), provides information about the use of musculoskeletal ultrasound for assessing extraarticular structures (muscles, tendons, entheses, ligaments, bones, bursae, fasciae, nerves, skin, subcutaneous tissues, and nails) and their pathologies. Clinical applications, practical points, limitations, and artifacts are described and discussed for every structure. After an extensive literature review, the recommendations have been developed according to the Oxford Centre for Evidence-based Medicine and GRADE criteria and the consensus level was established through a Delphi process. The document is intended to guide clinical users in their daily practice
    • …
    corecore